84 research outputs found

    Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    Get PDF
    The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite-and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected as a co-winner of NASA?s 2005 Software of the Year award.LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has e volved from two earlier efforts -- North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations.In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins". LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling be enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation, who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs.LIS has also recently been demonstrated for multi-model data assimilation using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature.Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation.Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling system

    Quantifying Errors in TRMM-Based Multi-Sensor QPE Products Over Land in Preparation for GPM

    Get PDF
    Determining uncertainties in satellite-based multi-sensor quantitative precipitation estimates over land of fundamental importance to both data producers and hydro climatological applications. ,Evaluating TRMM-era products also lays the groundwork and sets the direction for algorithm and applications development for future missions including GPM. QPE uncertainties result mostly from the interplay of systematic errors and random errors. In this work, we will synthesize our recent results quantifying the error characteristics of satellite-based precipitation estimates. Both systematic errors and total uncertainties have been analyzed for six different TRMM-era precipitation products (3B42, 3B42RT, CMORPH, PERSIANN, NRL and GSMap). For systematic errors, we devised an error decomposition scheme to separate errors in precipitation estimates into three independent components, hit biases, missed precipitation and false precipitation. This decomposition scheme reveals hydroclimatologically-relevant error features and provides a better link to the error sources than conventional analysis, because in the latter these error components tend to cancel one another when aggregated or averaged in space or time. For the random errors, we calculated the measurement spread from the ensemble of these six quasi-independent products, and thus produced a global map of measurement uncertainties. The map yields a global view of the error characteristics and their regional and seasonal variations, reveals many undocumented error features over areas with no validation data available, and provides better guidance to global assimilation of satellite-based precipitation data. Insights gained from these results and how they could help with GPM will be highlighted

    A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    Get PDF
    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, Rainy Day can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, Rainy Day can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. Rainy Day can be useful for hazard modeling under nonstationary conditions

    Diagnosing the Nature of Land-Atmosphere Coupling: A Case Study of Dry/Wet Extremes

    Get PDF
    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts oflocalland-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. In addition, we examine the impact of improved specification ofland surface states, anomalies, and fluxes that are obtained through the use of a hew optimization and uncertainty module in LIS, on the L-A coupling in WRF forecasts. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies

    The Impact of AMSR-E Soil Moisture Assimilation on Evapotranspiration Estimation

    Get PDF
    An assessment ofETestimates for current LDAS systems is provided along with current research that demonstrates improvement in LSM ET estimates due to assimilating satellite-based soil moisture products. Using the Ensemble Kalman Filter in the Land Information System, we assimilate both NASA and Land Parameter Retrieval Model (LPRM) soil moisture products into the Noah LSM Version 3.2 with the North American LDAS phase 2 CNLDAS-2) forcing to mimic the NLDAS-2 configuration. Through comparisons with two global reference ET products, one based on interpolated flux tower data and one from a new satellite ET algorithm, over the NLDAS2 domain, we demonstrate improvement in ET estimates only when assimilating the LPRM soil moisture product

    Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    Get PDF
    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours. AFWA recognizes the importance of operational benchmarking and uncertainty characterization for land surface modeling and is developing standard methods, software, and metrics to verify and/or validate LIS output products. To facilitate this and other needs for land analysis activities at AFWA, the Model Evaluation Toolkit (MET) -- a joint product of the National Center for Atmospheric Research Developmental Testbed Center (NCAR DTC), AFWA, and the user community -- and the Land surface Verification Toolkit (LVT), developed at the Goddard Space Flight Center (GSFC), have been adapted to operational benchmarking needs of AFWA's land characterization activities

    Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM

    Get PDF
    Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land

    P69 Using the NASA-Unified WRF to Assess the Impacts of Real-Time Vegetation on Simulations of Severe Weather

    Get PDF
    Since June 2010, the NASA Short-term Prediction Research and Transition (SPoRT; Goodman et al. 2004; Darden et al. 2010; Stano et al. 2012; Fuell et al. 2012) Center has been generating a real-time Normalized Difference Vegetation Index (NDVI) and corresponding Green Vegetation Fraction (GVF) composite based on reflectances from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. This dataset is generated at 0.01 resolution across the Continental United States (CONUS), and updated daily. The goal of producing such a vegetation dataset is to improve over the default climatological GVF dataset in land surface and numerical weather prediction models, in order to have better simulations of heat and moisture exchange between the land surface and the planetary boundary layer. Details on the SPoRT/MODIS vegetation composite algorithm are presented in Case et al. (2011). Vegetation indices such as GVF and Leaf Area Index (LAI) are used by land surface models (LSMs) to represent the horizontal and vertical density of plant vegetation (Gutman and Ignatov 1998), in order to calculate transpiration, interception and radiative shading. Both of these indices are related to the NDVI; however, there is an inherent ambiguity in determining GVF and LAI simultaneously from NDVI, as described in Gutman and Ignatov (1998). One practice is to specify the LAI while allowing the GVF to vary both spatially and temporally, as is done in the Noah LSM (Chen and Dudhia 2001; Ek et al. 2003). Operational versions of Noah within several of the National Centers for Environmental Prediction (NCEP) global and regional modeling systems hold the LAI fixed, while the GVF varies according to a global monthly climatology. This GVF climatology was derived from NDVI data on the NOAA Advanced Very High Resolution Radiometer (AVHRR) polar orbiting satellite, using information from 1985 to 1991 (Gutman and Ignatov 1998; Jiang et al. 2010). Representing data at the mid-point of every month, the climatological dataset is on a grid with 0.144 (~16 km) spatial resolution and is distributed with the community WRF model (Ek et al. 2003; Jiang et al. 2010; Skamarock et al. 2008)

    Effects of Real-Time NASA Vegetation Data on Model Forecasts of Severe Weather

    Get PDF
    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the other uses the daily SPoRT/MODIS GVFs. Finally, snapshots of the LIS land surface fields are used to initialize two different simulations of the NU-WRF, one running with climatology LIS and GVFs, and the other running with experimental LIS and NASA/SPoRT GVFs. In this paper/presentation, case study results will be highlighted in regions with significant differences in GVF between the NCEP climatology and SPoRT product during severe weather episodes

    Regionalizing Africa: Patterns of Precipitation Variability in Observations and Global Climate Models

    Get PDF
    Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 19812014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios
    • …
    corecore